I built the “Quantum Retro Composer,” a Python system that blends quantum entropy, Gemini 2.5 Flash, and custom DSP synthesis to generate infinite, looping, royaltyI built the “Quantum Retro Composer,” a Python system that blends quantum entropy, Gemini 2.5 Flash, and custom DSP synthesis to generate infinite, looping, royalty

How I Built an Infinite Retro Game Soundtrack Generator Using Quantum Physics and Gemini 2.5 Flash

2025/12/12 02:53
5 min read

We’ve all been there. You’re building an indie game, and you need background music. You don’t have the budget to license tracks, and you definitely don’t have the time to learn music theory.

So, I asked myself: Can I build a machine that generates infinite, royalty-free, copyright-cleared retro game music using Python?

The answer is yes. But to make it actually good, I had to do something a little crazy. I had to abandon standard computer randomness and use Quantum Vacuum Fluctuations and Google’s Gemini 2.5 Flash.

Here is how I built the Quantum Retro Composer.

The Problem with random.randint()

My first attempt was simple: use Python’s random library to pick notes from a scale.

# The "Robot Chaos" approach note = random.choice(['C', 'E', 'G', 'B'])

The result? It sounded like a robot falling down the stairs. It was random, but it wasn't music. Music isn't just random events; it's structure, repetition, and "vibe." Standard pseudo-random number generators (PRNGs) are deterministic and boring. They don't have souls.

To fix this, I needed two things:

  1. True Entropy: Randomness derived from the physical world, not an algorithm.
  2. Musical Intelligence: Something that understands the difference between a "boss fight" and a "stealth mission."

Step 1: Harvesting Entropy from the Vacuum

To get "organic" variation, I connected my Python script to the Australian National University (ANU) Quantum Random Numbers API.

This API measures the quantum fluctuations of the vacuum in real-time. By measuring the noise of a laser, we get true, unpredictable entropy. I combined this with my computer's hardware entropy and the current nanosecond time to generate a Cryptographic Seed.

def get_quantum_seed(): # 1. Get Hardware Entropy hw = secrets.token_bytes(32) # 2. Get Quantum Vacuum Data (from ANU API) qw = requests.get("https://qrng.anu.edu.au/API/jsonI.php...").content # 3. Hash them together hasher = hashlib.sha256() hasher.update(hw + qw) return int(hasher.hexdigest(), 16)

Now, every song my script generates is mathematically unique in the universe.

Step 2: The Conductor (Gemini 2.5 Flash)

Randomness gives us variation, but it doesn't give us structure. This is where Gemini 2.5 Flash comes in.

Instead of writing complex rules for music theory (which is hard), I treat the LLM as a "Composer." I feed it my Quantum Seed and a prompt describing the vibe I want ("High energy retro game boss fight"), and I ask it to return a JSON "Music Sheet."

Here is the secret sauce: I don't ask Gemini for audio. I ask for Data.

prompt = f""" You are a legendary Retro Game Composer. Seed: {seed}. Create a BUSY, CONTINUOUS Retro Game Soundtrack (3 Phases). JSON Structure: {{ "bpm": 125, "phase_1": {{ "kick": [0, 4, 8...], "bass": [ {{ "step": 0, "freq": 55.0 }} ] }}, "phase_2": {{ ... }} }} """

Gemini understands syncopation. It knows that if the kick drum hits on beat 1, the snare usually hits on beat 2. It handles the "music theory" so I don't have to.

Step 3: The Synthesizer (Pure Math)

I didn't want to rely on external sample packs (MP3s) because that limits variation. Instead, I built a Digital Signal Processing (DSP) engine in Python using numpy.

Every instrument is generated from scratch using sine waves, noise, and math.

The "Retro" Kick Drum: To sound like a 90s console, you don't use a real drum recording. You take a sine wave and pitch-shift it down rapidly.

def synth_kick_retro(): t = np.linspace(0, 0.4, int(44100 * 0.4)) # Drop pitch from 150Hz to 40Hz quickly freq = 150 * np.exp(-12 * t) + 40 wave = np.sin(2 * np.pi * freq * t) # Clip it for that "crunchy" 16-bit sound return np.clip(wave * 1.5, -0.8, 0.8)

I built similar mathematical models for:

  • Snare: White noise + a short sine wave "thud."
  • Bass: A square wave (NES style).
  • Keys: Pulse waves with a simple LFO (Low Frequency Oscillator) for tremolo.

Step 4: The "Glue" (Solving the Silence)

The early versions of the script had a flaw: they were too sparse. The AI would write a cool beat for 2 seconds and then leave 2 seconds of silence. It sounded like a ticker tape.

To solve this, I wrote a Density Enforcer.

Before rendering the audio, my script scans the JSON returned by Gemini. If the drum pattern is too empty, or if the loop doesn't extend to the end of the bar, the Python script mechanically injects "filler" notes—like a steady hi-hat or a drone pad—to ensure there is never dead air.

def ensure_density(data): # If the AI forgot to write Hi-Hats, force 8th notes if len(data.get("closed_hat", [])) < 16: data["closed_hat"] = list(range(0, 64, 2)) return data

I also added a Pad Drone—a low-volume background synthesizer that plays the root note continuously. This acts as "audio glue," blending the disjointed AI notes into a cohesive track.

The Result: Infinite Retro Bops

The final script exports a .wav file that is:

  1. Seamlessly Looping: It calculates the exact sample count to cut the file on the beat.
  2. Bit-Crushed: I added a downsampling algorithm to emulate the SNES audio chip.
  3. Copyright Free: Generated by math + entropy.

I can now generate a unique, 3-minute evolving boss theme in about 15 seconds. It starts with a stealthy intro, builds into a groove, hits a chaotic climax, and fades back out—all dictated by the roll of a quantum dice.

Check it out on GitHub

This project was completed by Gemini in the browser. Visual Studio Code was used for testing. As always, I am a very blind individual, and I use special tools to help me do my projects. Centaur Model ftw! (for the win)

Market Opportunity
SQUID MEME Logo
SQUID MEME Price(GAME)
$38.6039
$38.6039$38.6039
+2.25%
USD
SQUID MEME (GAME) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Disney Pockets $2.2 Billion For Filming Outside America

Disney Pockets $2.2 Billion For Filming Outside America

The post Disney Pockets $2.2 Billion For Filming Outside America appeared on BitcoinEthereumNews.com. Disney has made $2.2 billion from filming productions like ‘Avengers: Endgame’ in the U.K. ©Marvel Studios 2018 Disney has been handed $2.2 billion by the government of the United Kingdom over the past 15 years in return for filming movies and streaming shows in the country according to analysis of more than 400 company filings Disney is believed to be the biggest single beneficiary of the Audio-Visual Expenditure Credit (AVEC) in the U.K. which gives studios a cash reimbursement of up to 25.5% of the money they spend there. The generous fiscal incentives have attracted all of the major Hollywood studios to the U.K. and the country has reeled in the returns from it. Data from the British Film Institute (BFI) shows that foreign studios contributed around 87% of the $2.2 billion (£1.6 billion) spent on making films in the U.K. last year. It is a 7.6% increase on the sum spent in 2019 and is in stark contrast to the picture in the United States. According to permit issuing office FilmLA, the number of on-location shooting days in Los Angeles fell 35.7% from 2019 to 2024 making it the second-least productive year since 1995 aside from 2020 when it was the height of the pandemic. The outlook hasn’t improved since then with FilmLA’s latest data showing that between April and June this year there was a 6.2% drop in shooting days on the same period a year ago. It followed a 22.4% decline in the first quarter with FilmLA noting that “each drop reflected the impact of global production cutbacks and California’s ongoing loss of work to rival territories.” The one-two punch of the pandemic followed by the 2023 SAG-AFTRA strikes put Hollywood on the ropes just as the U.K. began drafting a plan to improve its fiscal incentives…
Share
BitcoinEthereumNews2025/09/18 07:20
World Liberty Financial to Tokenise Revenue From Trump

World Liberty Financial to Tokenise Revenue From Trump

WLFI expands into tokenised hospitality assets, structuring a private placement linked to a Maldives luxury resort. The post World Liberty Financial to Tokenise
Share
Cryptonews AU2026/02/19 14:29
XPL Technical Analysis Feb 19

XPL Technical Analysis Feb 19

The post XPL Technical Analysis Feb 19 appeared on BitcoinEthereumNews.com. XPL’s technical chart reflects the dominant bearish trend; while the price is positioned
Share
BitcoinEthereumNews2026/02/19 13:59