This blog walks through approaches to implement custom notifications using SMTP, SendGrid, Azure Logic Apps, and Microsoft Graph API. Using SMTP with Python inside a Databricks notebook, you can generate an Excel report and send it via email whenever a pipeline fails.This blog walks through approaches to implement custom notifications using SMTP, SendGrid, Azure Logic Apps, and Microsoft Graph API. Using SMTP with Python inside a Databricks notebook, you can generate an Excel report and send it via email whenever a pipeline fails.

Custom Email Notifications for Databricks Pipeline Failures

2025/09/30 06:13

When working with Databricks pipelines and workflows, failures are inevitable. While Databricks provides built-in notifications for job failures, these alerts are often not customizable and may not fit specific reporting or formatting needs. A more flexible and cost-effective approach is to set up custom email notifications that include pipeline details and error messages in a structured format, such as an Excel attachment.

This blog walks through approaches to implement custom notifications using SMTP, SendGrid, Azure Logic Apps, and Microsoft Graph API.

Why Custom Notifications?

  • Flexible formatting: Include pipeline metadata, error messages, and runtime details.
  • Attachments: Share structured reports (Excel, CSV, etc.) instead of plain text.
  • Cost efficiency: Avoid additional third-party monitoring solutions.
  • Integration options: Easily plug into existing email infrastructure.

Approach 1: SMTP-Based Notifications

Using SMTP with Python inside a Databricks notebook, you can generate an Excel report and send it via email whenever a pipeline fails.

Example Implementation

import smtplib from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.mime.text import MIMEText from email import encoders from io import BytesIO import pandas as pd  #Sample pipeline history df = spark.createDataFrame([ ('pipeline1', 'success', '7min'), ('pipeline1', 'fail', '3min'), ('pipeline1', 'success', '10min') ], ["PipelineName", "Status", "Duration"])  # Convert DataFrame to Excel output = BytesIO()  with pd.ExcelWriter(output, engine='xlsxwriter') as writer:  df_pd = df.toPandas()  df_pd.to_excel(writer, index=False, sheet_name='Sheet1')  workbook = writer.book  worksheet = writer.sheets['Sheet1'] 
# Apply formatting header_format = workbook.add_format({     'bold': True,     'bg_color': '#FFF00',     'border': 1,     'align': 'center',     'valign': 'vcenter' }) for col_num, value in enumerate(df_pd.columns):     worksheet.write(0, col_num, value.upper(), header_format)  cell_format = workbook.add_format({'border': 1}) for row in range(1, len(df_pd) + 1):     for col in range(len(df_pd.columns)):         worksheet.write(row, col, df_pd.iloc[row-1, col], cell_format)  for i, col in enumerate(df_pd.columns):     worksheet.set_column(i, i, 20) output.seek(0)  # Email configuration sender = "from@example.com" receiver = "to@example.com" subject = "Pipeline Execution Report" body = """Hello Team,  Please find the attachment of the latest pipeline report.  Thanks, Pipeline Team"""  msg = MIMEMultipart() msg['From'] = sender msg['To'] = receiver msg['Subject'] = subject msg.attach(MIMEText(body, 'plain'))  part = MIMEBase('application', 'vnd.openxmlformats-officedocument.spreadsheetml.sheet') part.set_payload(output.read()) encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="pipeline_report.xlsx"') msg.attach(part)  smtp_server = "smtp.office.com" smtp_port = 587  with smtplib.SMTP(smtp_server, smtp_port) as server:     server.starttls()     server.login(sender, "sender_password")     server.send_message(msg)  print("Email sent successfully with Excel attachment") 

Scheduling Notifications

You can automate the notification trigger by scheduling the notebook:

Option 1: Databricks Jobs

  • Create or edit a Databricks job.
  • Add a task dependency so the notification script runs only if the previous task fails.
  • This ensures error details are captured and reported immediately.

Option 2: Azure Logic Apps

  • Configure a Logic App that listens for pipeline failures.
  • Pass pipeline details and attachments via an API call in JSON format.
  • Logic Apps handle email delivery and retry mechanisms.

Conclusion

While Databricks provides basic failure notifications, extending them with custom SMTP or Logic App workflows ensures:

  • Rich, formatted reports.
  • Team visibility with detailed context.
  • Seamless integration with enterprise communication tools.

This approach is cost-effective, scalable, and easily adaptable for large-scale pipeline monitoring.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Tokenized Assets Shift From Wrappers to Building Blocks in DeFi

Tokenized Assets Shift From Wrappers to Building Blocks in DeFi

The post Tokenized Assets Shift From Wrappers to Building Blocks in DeFi appeared on BitcoinEthereumNews.com. RWAs are rapidly moving on-chain, unlocking new opportunities for investors and DeFi protocols, according to a new report from Dune and RWAxyz. Tokenized real-world assets (RWAs) are moving beyond digital versions of traditional securities to become key building blocks of decentralized finance (DeFi), according to the 2025 RWA Report from Dune and RWAxyz. The report notes that Treasuries, bonds, credit, and equities are now being used in DeFi as collateral, trading instruments, and yield products. This marks tokenization’s “real breakthrough” – composability, or the ability to combine and reuse assets across different protocols. Projects are already showing how this works in practice. Asset manager Maple Finance’s syrupUSDC, for example, has grown to $2.5 billion, with more than 30% placed in DeFi apps like Spark ($570 million). Centrifuge’s new deJAAA token, a wrapper for Janus Henderson’s AAA CLO fund, is already trading on Aerodrome, Coinbase and other exchanges, with Stellar planned next. Meanwhile, Aave’s Horizon RWA Market now lets institutional users post tokenized Treasuries and CLOs as collateral. This trend underscores a bigger shift: RWAs are no longer just copies of traditional assets; instead, they are becoming core parts of on-chain finance, powering lending, liquidity, and yield, and helping to close the gap between traditional finance (TradFi) and DeFi. “RWAs have crossed the chasm from experimentation to execution,” Sid Powell, CEO of Maple Finance, says in the report. “Our growth to $3.5B AUM reflects a broader shift: traditional financial services are adopting crypto assets while institutions seek exposure to on-chain markets.” Investor demand for higher returns and more diversified options is mainly driving this growth. Tokenized Treasuries proved there is strong demand, with $7.3 billion issued by September 2025 – up 85% year-to-date. The growth was led by BlackRock, WisdomTree, Ondo, and Centrifuge’s JTRSY (Janus Henderson Anemoy Treasury Fund). Spark’s $1…
Share
BitcoinEthereumNews2025/09/18 06:10