Describing the application of Faraday synthesis to the calibrated CHIME data to create maps of integrated polarized intensity and peak Faraday depthDescribing the application of Faraday synthesis to the calibrated CHIME data to create maps of integrated polarized intensity and peak Faraday depth

Calibration of Radio Polarization Data: Enhancing Correlation Between CHIME and Dwingeloo Surveys

2025/10/09 00:15

Abstract and 1 Introduction

  1. Faraday Rotation and Faraday Synthesis

  2. Dara & Instruments

    3.1. CHIME and GMIMS surveys and 3.2. CHIME/GMIMS Low Band North

    3.3. DRAO Synthesis Telescope Observations

    3.4. Ancillary Data Sources

  3. Features of the Tadpole

    4.1. Morphology in single-frequency images

    4.2. Faraday depths

    4.3. Faraday complexity

    4.4. QU fitting

    4.5. Artifacts

  4. The Origin of the Tadpole

    5.1. Neutral Hydrogen Structure

    5.2. Ionized Hydrogen Structure

    5.3. Proper Motions of Candidate Stars

    5.4. Faraday depth and electron column

  5. Summary and Future Prospects

\ APPENDIX

A. RESOLVED AND UNRESOLVED FARADAY COMPONENTS IN FARADAY SYNTHESIS

B. QU FITTING RESULTS

\ REFERENCES

3.1. CHIME and GMIMS surveys

3.2. CHIME/GMIMS Low Band North

\

\ The ringmaps we use do not have beam deconvolution applied. There are small artifacts in the image resulting from this which we describe in Section 4.5, however, their presence is not detrimental to studying structures on the scale of several degrees, such as the tadpole. In this analysis, we use the 400 − 729 MHz subset of the full CHIME band, as the highest frequencies are contaminated by aliasing, which makes the maps unreliable in the region of interest.

\ 3.2.1. Polarization angle calibration

\

\

\

\ Stokes U and V are measured from the crosscorrelation products. We assume that ⟨V ⟩ = 0 from the sky in diffuse emission because synchrotron emission in low-density astrophysical environments does not produce circular polarization. Leakage between V and U arises from phase offsets. We measure a mean phase shift ⟨ψ⟩(δ, ν) at each declination and frequency assuming that ⟨V ⟩ = 0 and calculate

\

\ The ⟨V ⟩ = 0 assumption leads to high-quality fits even in fast radio burst (FRB) observations, where the assumption has less clear physical justification than in the diffuse polarized emission we investigate (Mckinven et al. 2023). We find that the phase shift is linear in frequency, consistent with a cable delay τ = ⟨ψ⟩/2πν ∼ 1 ns for the diffuse emission, as Mckinven et al. (2021, their Appendix A) found in CHIME/FRB data.

\ In Figure 1, we compare the calibrated data to the Dwingeloo telescope survey at 610 MHz in the Fan region (Brouw & Spoelstra 1976). There is a strong correlation between Dwingeloo U and CHIME U and Dwingeloo Q and CHIME Q in those directions for which there is Dwingeloo data, with correlation coefficient R values of 0.91 for U − U and 0.89 for Q − Q comparisons. This is a significant improvement from the uncalibrated correlation coefficients of 0.76 and 0.59 respectively. We find a remaining leakage of up to 20% in Stokes Q based on unresolved point source measurements. Using the mean orthogonal distance between each point and the fitted line, we find that noise from CHIME and Dwingeloo data describe ≈ 70% of the scatter in Figure 1. The polarization angle correlation, also shown in Figure 1, is also improved through calibration, and most outliers are points with low polarized intensity (yellow dots), where the uncertainty in derived χ is high.

\ We show the resulting CHIME Q and U maps, with the χ = 0 reference axis rotated to the north Galactic pole, in Figure 2. While Stokes I to Q leakage does exist in our data, the tadpole structure cannot simply be the result of leakage. Although there is total intensity emission over the entire Fan Region, including the tadpole, this emission is featureless on small scales and thus cannot produce spurious polarization matching the tadpole in morphology. Furthermore, the tadpole cannot be the product of Stokes I emission originating at large angular distances (such as the Galactic plane) and seen in far sidelobes. While the far sidelobes have poor polarization properties, their polarization averages to low values over sizable areas. Moreover, with linear feeds, leakage from I is primarily into Q, not U (in the native equatorial coordinates of CHIME), but the tadpole is already evident in Stokes U in equatorial coordinates (not shown).

\

\

\ 3.2.2. Faraday synthesis on CHIME data

\

\

\ Using the rmtools_peakfitcube algorithm in RM-Tools, we obtain the peak Faraday depth and its

\ Figure 2. Images of the tadpole region in Stokes Q and U at 614 MHz in Galactic coordinates. The ‘×’ markers indicate the position of B2(e) star HD 20336 (the × near the center of the circular tadpole head) as well as the selected spectra shown in Figure 7. The thin black line represents the Local Standard of Rest (LSR)-corrected proper motion of HD 20336, projected backwards in time over 3 Myr, with each dot representing 1 Myr. The translucent lines represent the error cone, which is dominated by the uncertainty in the LSR correction.

\ associated error for every spectrum along all lines of sight. The resulting map is shown in Figure 3b. We use peak Faraday depths rather than a first moment (Dickey et al. 2019) to focus on the Faraday depth of the brightest feature in each LOS rather than a weighted mean Faraday depth in Faraday complex regions.

\ We show the integrated polarized intensity across the Faraday depth spectra as a zero moment map in Figure 3a. A polarization angle map derotated to χ0 by the peak Faraday depth at each pixel is shown in Figure 3c.

\

:::info Authors:

(1) Nasser Mohammed, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(2) Anna Ordog, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(3) Rebecca A. Booth, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;

(4) Andrea Bracco, INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy and Laboratoire de Physique de l’Ecole Normale Superieure, ENS, Universit´e PSL, CNRS, Sorbonne Universite, Universite de Paris, F-75005 Paris, France;

(5) Jo-Anne C. Brown, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;

(6) Ettore Carretti, INAF-Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy;

(7) John M. Dickey, School of Natural Sciences, University of Tasmania, Hobart, Tas 7000 Australia;

(8) Simon Foreman, Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

(9) Mark Halpern, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(10) Marijke Haverkorn, Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands;

(11) Alex S. Hill, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(12) Gary Hinshaw, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(13) Joseph W. Kania, Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506, USA and Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA;

(14) Roland Kothes, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(15) T.L. Landecker, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(16) Joshua MacEachern, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(17) Kiyoshi W. Masui, MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;

(18) Aimee Menard, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(19) Ryan R. Ransom, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada and Department of Physics and Astronomy, Okanagan College, Kelowna, BC V1Y 4X8, Canada;

(20) Wolfgang Reich, Max-Planck-Institut fur Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany;(21) Patricia Reich, 16

(22) J. Richard Shaw, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada

(23) Seth R. Siegel, Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N25 2YL, Canada, Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8, Canada, and Trottier Space Institute, McGill University, 3550 rue University, Montreal, QC H3A 2A7, Canada;

(24) Mehrnoosh Tahani, Banting and KIPAC Fellowships: Kavli Institute for Particle Astrophysics & Cosmology (KIPAC), Stanford University, Stanford, CA 94305, USA;

(25) Alec J. M. Thomson, ATNF, CSIRO Space & Astronomy, Bentley, WA, Australia;

(26) Tristan Pinsonneault-Marotte, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(27) Haochen Wang, MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;

(28) Jennifer L. West, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(29) Maik Wolleben, Skaha Remote Sensing Ltd., 3165 Juniper Drive, Naramata, BC V0H 1N0, Canada.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

SEC urges caution on crypto wallets in latest investor guide

SEC urges caution on crypto wallets in latest investor guide

The SEC’s Office of Investor Education and Assistance issued a bulletin warning retail investors about crypto asset custody risks. The guidance covers how investors
Share
Crypto.news2025/12/15 01:45
Crucial Fed Rate Cut: October Probability Surges to 94%

Crucial Fed Rate Cut: October Probability Surges to 94%

BitcoinWorld Crucial Fed Rate Cut: October Probability Surges to 94% The financial world is buzzing with a significant development: the probability of a Fed rate cut in October has just seen a dramatic increase. This isn’t just a minor shift; it’s a monumental change that could ripple through global markets, including the dynamic cryptocurrency space. For anyone tracking economic indicators and their impact on investments, this update from the U.S. interest rate futures market is absolutely crucial. What Just Happened? Unpacking the FOMC Statement’s Impact Following the latest Federal Open Market Committee (FOMC) statement, market sentiment has decisively shifted. Before the announcement, the U.S. interest rate futures market had priced in a 71.6% chance of an October rate cut. However, after the statement, this figure surged to an astounding 94%. This jump indicates that traders and analysts are now overwhelmingly confident that the Federal Reserve will lower interest rates next month. Such a high probability suggests a strong consensus emerging from the Fed’s latest communications and economic outlook. A Fed rate cut typically means cheaper borrowing costs for businesses and consumers, which can stimulate economic activity. But what does this really signify for investors, especially those in the digital asset realm? Why is a Fed Rate Cut So Significant for Markets? When the Federal Reserve adjusts interest rates, it sends powerful signals across the entire financial ecosystem. A rate cut generally implies a more accommodative monetary policy, often enacted to boost economic growth or combat deflationary pressures. Impact on Traditional Markets: Stocks: Lower interest rates can make borrowing cheaper for companies, potentially boosting earnings and making stocks more attractive compared to bonds. Bonds: Existing bonds with higher yields might become more valuable, but new bonds will likely offer lower returns. Dollar Strength: A rate cut can weaken the U.S. dollar, making exports cheaper and potentially benefiting multinational corporations. Potential for Cryptocurrency Markets: The cryptocurrency market, while often seen as uncorrelated, can still react significantly to macro-economic shifts. A Fed rate cut could be interpreted as: Increased Risk Appetite: With traditional investments offering lower returns, investors might seek higher-yielding or more volatile assets like cryptocurrencies. Inflation Hedge Narrative: If rate cuts are perceived as a precursor to inflation, assets like Bitcoin, often dubbed “digital gold,” could gain traction as an inflation hedge. Liquidity Influx: A more accommodative monetary environment generally means more liquidity in the financial system, some of which could flow into digital assets. Looking Ahead: What Could This Mean for Your Portfolio? While the 94% probability for a Fed rate cut in October is compelling, it’s essential to consider the nuances. Market probabilities can shift, and the Fed’s ultimate decision will depend on incoming economic data. Actionable Insights: Stay Informed: Continue to monitor economic reports, inflation data, and future Fed statements. Diversify: A diversified portfolio can help mitigate risks associated with sudden market shifts. Assess Risk Tolerance: Understand how a potential rate cut might affect your specific investments and adjust your strategy accordingly. This increased likelihood of a Fed rate cut presents both opportunities and challenges. It underscores the interconnectedness of traditional finance and the emerging digital asset space. Investors should remain vigilant and prepared for potential volatility. The financial landscape is always evolving, and the significant surge in the probability of an October Fed rate cut is a clear signal of impending change. From stimulating economic growth to potentially fueling interest in digital assets, the implications are vast. Staying informed and strategically positioned will be key as we approach this crucial decision point. The market is now almost certain of a rate cut, and understanding its potential ripple effects is paramount for every investor. Frequently Asked Questions (FAQs) Q1: What is the Federal Open Market Committee (FOMC)? A1: The FOMC is the monetary policymaking body of the Federal Reserve System. It sets the federal funds rate, which influences other interest rates and economic conditions. Q2: How does a Fed rate cut impact the U.S. dollar? A2: A rate cut typically makes the U.S. dollar less attractive to foreign investors seeking higher returns, potentially leading to a weakening of the dollar against other currencies. Q3: Why might a Fed rate cut be good for cryptocurrency? A3: Lower interest rates can reduce the appeal of traditional investments, encouraging investors to seek higher returns in alternative assets like cryptocurrencies. It can also be seen as a sign of increased liquidity or potential inflation, benefiting assets like Bitcoin. Q4: Is a 94% probability a guarantee of a rate cut? A4: While a 94% probability is very high, it is not a guarantee. Market probabilities reflect current sentiment and data, but the Federal Reserve’s final decision will depend on all available economic information leading up to their meeting. Q5: What should investors do in response to this news? A5: Investors should stay informed about economic developments, review their portfolio diversification, and assess their risk tolerance. Consider how potential changes in interest rates might affect different asset classes and adjust strategies as needed. Did you find this analysis helpful? Share this article with your network to keep others informed about the potential impact of the upcoming Fed rate cut and its implications for the financial markets! To learn more about the latest crypto market trends, explore our article on key developments shaping Bitcoin price action. This post Crucial Fed Rate Cut: October Probability Surges to 94% first appeared on BitcoinWorld.
Share
Coinstats2025/09/18 02:25
Bitcoin’s Battle with Market Pressures Sparks Concerns

Bitcoin’s Battle with Market Pressures Sparks Concerns

Throughout the weekend, Bitcoin exhibited a degree of stability. Yet, it is once again challenging the critical support level of $88,000.Continue Reading:Bitcoin
Share
Coinstats2025/12/15 01:35