Zero knowledge proofs enhance transparency while maintaining confidentiality in decision-making processes. Lagrange is pioneering the integration of zero knowledge proofs in AI to ensure privacy. Current privacy methods in AI fall short compared to innovative cryptographic approaches.
Key takeaways
- Zero knowledge proofs enhance transparency while maintaining confidentiality in decision-making processes.
- Lagrange is pioneering the integration of zero knowledge proofs in AI to ensure privacy.
- Current privacy methods in AI fall short compared to innovative cryptographic approaches.
- Privacy-preserving models require cryptographic integration from the development stage.
- Open source models often underperform in commercial applications.
- Protecting both intellectual property and consumer data is crucial in AI model deployment.
- Many private AI solutions fail to enhance privacy on commercially relevant models.
- The tech industry’s focus on trivial applications detracts from addressing national security.
- ZK machine learning relies on mathematics, not hardware, for privacy.
- Venture financing in aerospace and defense is insufficient for national security needs.
- Lagrange’s Deep Proof library is a key innovation in safeguarding AI data.
- Zero knowledge technology is reshaping the landscape of cryptographic security.
Guest intro
Ismael Hishon-Rezaizadeh is CEO and co-founder of Lagrange Labs, where he leads the development of DeepProve, the world’s fastest zkML library for verifiable AI inference. He spearheaded the first zero-knowledge proof of Google’s Gemma3 large language model, demonstrating production-ready verification at 158x the performance of competing solutions. His work advances ZK technology from crypto applications to defense-critical uses like securing autonomous drone swarms.
The role of zero knowledge proofs in decision-making
Lagrange’s innovative approach to AI privacy
The limitations of current AI privacy solutions
The need for cryptographic security in AI models
The dual need for privacy in AI
The tech industry’s focus and national security
The mathematical nature of ZK machine learning
The implications of venture financing on national security
Zero knowledge proofs enhance transparency while maintaining confidentiality in decision-making processes. Lagrange is pioneering the integration of zero knowledge proofs in AI to ensure privacy. Current privacy methods in AI fall short compared to innovative cryptographic approaches.
Key takeaways
- Zero knowledge proofs enhance transparency while maintaining confidentiality in decision-making processes.
- Lagrange is pioneering the integration of zero knowledge proofs in AI to ensure privacy.
- Current privacy methods in AI fall short compared to innovative cryptographic approaches.
- Privacy-preserving models require cryptographic integration from the development stage.
- Open source models often underperform in commercial applications.
- Protecting both intellectual property and consumer data is crucial in AI model deployment.
- Many private AI solutions fail to enhance privacy on commercially relevant models.
- The tech industry’s focus on trivial applications detracts from addressing national security.
- ZK machine learning relies on mathematics, not hardware, for privacy.
- Venture financing in aerospace and defense is insufficient for national security needs.
- Lagrange’s Deep Proof library is a key innovation in safeguarding AI data.
- Zero knowledge technology is reshaping the landscape of cryptographic security.
Guest intro
Ismael Hishon-Rezaizadeh is CEO and co-founder of Lagrange Labs, where he leads the development of DeepProve, the world’s fastest zkML library for verifiable AI inference. He spearheaded the first zero-knowledge proof of Google’s Gemma3 large language model, demonstrating production-ready verification at 158x the performance of competing solutions. His work advances ZK technology from crypto applications to defense-critical uses like securing autonomous drone swarms.
The role of zero knowledge proofs in decision-making
Lagrange’s innovative approach to AI privacy
The limitations of current AI privacy solutions
The need for cryptographic security in AI models
The dual need for privacy in AI
The tech industry’s focus and national security
The mathematical nature of ZK machine learning
The implications of venture financing on national security
Loading more articles…
You’ve reached the end
Add us on Google
`;
}
function createMobileArticle(article) {
const displayDate = getDisplayDate(article);
const editorSlug = article.editor ? article.editor.toLowerCase().replace(/\s+/g, ‘-‘) : ”;
const captionHtml = article.imageCaption ? `
${article.imageCaption}
` : ”;
const authorHtml = article.isPressRelease ? ” : `
`;
return `
${captionHtml}
${article.subheadline ? `
${article.subheadline}
` : ”}
${createSocialShare()}
${authorHtml}
${displayDate}
${article.content}
`;
}
function createDesktopArticle(article, sidebarAdHtml) {
const editorSlug = article.editor ? article.editor.toLowerCase().replace(/\s+/g, ‘-‘) : ”;
const displayDate = getDisplayDate(article);
const captionHtml = article.imageCaption ? `
${article.imageCaption}
` : ”;
const categoriesHtml = article.categories.map((cat, i) => {
const separator = i < article.categories.length – 1 ? ‘|‘ : ”;
return `${cat}${separator}`;
}).join(”);
const desktopAuthorHtml = article.isPressRelease ? ” : `
`;
return `
${categoriesHtml}
${article.subheadline}
` : ”}
${desktopAuthorHtml}
${displayDate}
${createSocialShare()}
${captionHtml}
`;
}
function loadMoreArticles() {
if (isLoading || !hasMore) return;
isLoading = true;
loadingText.classList.remove(‘hidden’);
// Build form data for AJAX request
const formData = new FormData();
formData.append(‘action’, ‘cb_lovable_load_more’);
formData.append(‘current_post_id’, lastLoadedPostId);
formData.append(‘primary_cat_id’, primaryCatId);
formData.append(‘before_date’, lastLoadedDate);
formData.append(‘loaded_ids’, loadedPostIds.join(‘,’));
fetch(ajaxUrl, {
method: ‘POST’,
body: formData
})
.then(response => response.json())
.then(data => {
isLoading = false;
loadingText.classList.add(‘hidden’);
if (data.success && data.has_more && data.article) {
const article = data.article;
const sidebarAdHtml = data.sidebar_ad_html || ”;
// Check for duplicates
if (loadedPostIds.includes(article.id)) {
console.log(‘Duplicate article detected, skipping:’, article.id);
// Update pagination vars and try again
lastLoadedDate = article.publishDate;
loadMoreArticles();
return;
}
// Add to mobile container
mobileContainer.insertAdjacentHTML(‘beforeend’, createMobileArticle(article));
// Add to desktop container with fresh ad HTML
desktopContainer.insertAdjacentHTML(‘beforeend’, createDesktopArticle(article, sidebarAdHtml));
// Update tracking variables
loadedPostIds.push(article.id);
lastLoadedPostId = article.id;
lastLoadedDate = article.publishDate;
// Execute any inline scripts in the new content (for ads)
const newArticle = desktopContainer.querySelector(`article[data-article-id=”${article.id}”]`);
if (newArticle) {
const scripts = newArticle.querySelectorAll(‘script’);
scripts.forEach(script => {
const newScript = document.createElement(‘script’);
if (script.src) {
newScript.src = script.src;
} else {
newScript.textContent = script.textContent;
}
document.body.appendChild(newScript);
});
}
// Trigger Ad Inserter if available
if (typeof ai_check_and_insert_block === ‘function’) {
ai_check_and_insert_block();
}
// Trigger Google Publisher Tag refresh if available
if (typeof googletag !== ‘undefined’ && googletag.pubads) {
googletag.cmd.push(function() {
googletag.pubads().refresh();
});
}
} else if (data.success && !data.has_more) {
hasMore = false;
endText.classList.remove(‘hidden’);
} else if (!data.success) {
console.error(‘AJAX error:’, data.error);
hasMore = false;
endText.textContent=”Error loading more articles”;
endText.classList.remove(‘hidden’);
}
})
.catch(error => {
console.error(‘Fetch error:’, error);
isLoading = false;
loadingText.classList.add(‘hidden’);
hasMore = false;
endText.textContent=”Error loading more articles”;
endText.classList.remove(‘hidden’);
});
}
// Set up IntersectionObserver
const observer = new IntersectionObserver(function(entries) {
if (entries[0].isIntersecting) {
loadMoreArticles();
}
}, { threshold: 0.1 });
observer.observe(loadingTrigger);
})();
© Decentral Media and Crypto Briefing® 2026.
Source: https://cryptobriefing.com/ismael-hishon-rezaizadeh-zero-knowledge-proofs-are-revolutionizing-ai-privacy-epicenter/


