Support Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features. Less is known when moving to statistical learning onSupport Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features. Less is known when moving to statistical learning on

Hyperbolic SVM vs. Euclidean SVM: Comparing Optimization Challenges

Abstract and 1. Introduction

  1. Related Works

  2. Convex Relaxation Techniques for Hyperbolic SVMs

    3.1 Preliminaries

    3.2 Original Formulation of the HSVM

    3.3 Semidefinite Formulation

    3.4 Moment-Sum-of-Squares Relaxation

  3. Experiments

    4.1 Synthetic Dataset

    4.2 Real Dataset

  4. Discussions, Acknowledgements, and References

    \

A. Proofs

B. Solution Extraction in Relaxed Formulation

C. On Moment Sum-of-Squares Relaxation Hierarchy

D. Platt Scaling [31]

E. Detailed Experimental Results

F. Robust Hyperbolic Support Vector Machine

2 Related Works

Support Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features [10]. This convex quadratic optimization problem aims to find a linear separator that classifies samples of different labels and has the largest margin to data samples. The problem can be efficiently solved through coordinate descent or Lagrangian dual with sequential minimal optimization (SMO) [11] in the kernelized regime. Mature open source implementations exist such as LIBLINEAR [12] for the former and LIBSVM [13] for the latter.

\ Less is known when moving to statistical learning on non-Euclidean spaces, such as hyperbolic spaces. The popular practice is to directly apply neural networks in both obtaining the hyperbolic embeddings and perform inferences, such as classification, on these embeddings [2, 3, 14–20]. Recently, rising attention has been paid on transferring standard Euclidean statistical learning techniques, such as SVMs, to hyperbolic embeddings for both benchmarking neural net performances and developing better understanding of inherent data structures [4–7]. Learning a large-margin solution on hyperbolic space, however, involves a non-convex constrained optimization problem. Cho et al. [4] propose and solve the hyperbolic support vector machine problem using projected gradient descent; Weber et al. [7] add adversarial training to gradient descent for better generalizability; Chien et al. [5] propose applying Euclidean SVM to features projected to the tangent space of a heuristically-searched point to bypass PGD; Mishne et al. [6] reparametrize parameters and features back to Euclidean space to make the problem nonconvex and perform normal gradient descent. All these attempts are, however, gradient-descent-based algorithms, which are sensitive to initialization, hyperparameters, and class imbalances, and can provably converge to a local minimum without a global optimality guarantee.

\ Another relevant line of research focuses on providing efficient convex relaxations for various optimization problems, such as using semidefinite relaxation [8] for QCQP and moment-sum-ofsquares [21] for polynomial optimization problems. The flagship applications of SDP includes efficiently solving the max-cut problem on graphs [22] and more recently in machine learning tasks such as rotation synchronization in computer vision [23], robotics [24], and medical imaging [25]. Some results on the tightness of SDP have been analyzed on a per-problem basis [26–28]. On the other hand, moment-sum-of-squares relaxation, originated from algebraic geometry [21, 29], has been studied extensively from a theoretical perspective and has been applied for certifying positivity of functions in a bounded domain [30]. Synthesizing the work done in the control and algebraic geometry literature and geometric machine learning works is under-explored.

\

:::info Authors:

(1) Sheng Yang, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA (shengyang@g.harvard.edu);

(2) Peihan Liu, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA (peihanliu@fas.harvard.edu);

(3) Cengiz Pehlevan, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Center for Brain Science, Harvard University, Cambridge, MA, and Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA (cpehlevan@seas.harvard.edu).

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Market Opportunity
SolanaVM Logo
SolanaVM Price(SVM)
$0.00022511
$0.00022511$0.00022511
+14.55%
USD
SolanaVM (SVM) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

GitHub Copilot Gets Smarter With Context Engineering Techniques

GitHub Copilot Gets Smarter With Context Engineering Techniques

The post GitHub Copilot Gets Smarter With Context Engineering Techniques appeared on BitcoinEthereumNews.com. Peter Zhang Jan 12, 2026 23:03 GitHub reveals
Share
BitcoinEthereumNews2026/01/13 09:29
GBP trades firmly against US Dollar

GBP trades firmly against US Dollar

The post GBP trades firmly against US Dollar appeared on BitcoinEthereumNews.com. Pound Sterling trades firmly against US Dollar ahead of Fed’s policy outcome The Pound Sterling (GBP) clings to Tuesday’s gains near 1.3640 against the US Dollar (USD) during the European trading session on Wednesday. The GBP/USD pair holds onto gains as the US Dollar remains on the back foot amid firm expectations that the Federal Reserve (Fed) will cut interest rates in the monetary policy announcement at 18:00 GMT. At the time of writing, the US Dollar Index (DXY), which tracks the Greenback’s value against six major currencies, holds onto losses near a fresh two-month low of 96.60 posted on Tuesday. Read more… UK inflation unchanged at 3.8%, Pound shrugs The British pound is unchanged on Wednesday, trading at 1.3645 in the European session. Today’s inflation report was a dour reminder that UK inflation remains entrenched. CPI for August was unchanged at 3.8% y/y, matching the consensus and its highest level since January 2024. Airfares decreased but this was offset by food and petrol prices. Monthly, CPI rose 0.3%, up from 0.1% in July and matching the consensus. Core CPI, which excludes volatile items such as food and energy, eased to 3.6% from 3.8%. Monthly, core CPI ticked up to 0.3% from 0.2%. The inflation report comes just a day before the Bank of England announces its rate decision. Inflation is almost double the BoE’s target of 2% and today’s release likely means that the BoE will not reduce rates before 2026. Read more… Source: https://www.fxstreet.com/news/pound-sterling-price-news-and-forecast-gbp-trades-firmly-against-us-dollar-ahead-of-feds-policy-outcome-202509171209
Share
BitcoinEthereumNews2025/09/18 01:50
This U.S. politician’s suspicious stock trade just returned over 200% in weeks

This U.S. politician’s suspicious stock trade just returned over 200% in weeks

The post This U.S. politician’s suspicious stock trade just returned over 200% in weeks appeared on BitcoinEthereumNews.com. United States Representative Cloe Fields has seen his stake in Opendoor Technologies (NASDAQ: OPEN) stock return over 200% in just a matter of weeks. According to congressional trade filings, the lawmaker purchased a stake in the online real estate company on July 21, 2025, investing between $1,001 and $15,000. At the time, the stock was trading around $2 and had been largely stagnant for months. Receive Signals on US Congress Members’ Stock Trades Stocks Stay up-to-date on the trading activity of US Congress members. The signal triggers based on updates from the House disclosure reports, notifying you of their latest stock transactions. Enable signal The trade has since paid off, with Opendoor surging to $10, a gain of nearly 220% in under two months. By comparison, the broader S&P 500 index rose less than 5% during the same period. OPEN one-week stock price chart. Source: Finbold Assuming he invested a minimum of $1,001, the purchase would now be worth about $3,200, while a $15,000 stake would have grown to nearly $48,000, generating profits of roughly $2,200 and $33,000, respectively. OPEN’s stock rally Notably, Opendoor’s rally has been fueled by major corporate shifts and market speculation. For instance, in August, the company named former Shopify COO Kaz Nejatian as CEO, while co-founders Keith Rabois and Eric Wu rejoined the board, moves seen as a return to the company’s early innovative spirit.  Outgoing CEO Carrie Wheeler’s resignation and sale of millions in stock reinforced the sense of a new chapter. Beyond leadership changes, Opendoor’s surge has taken on meme-stock characteristics. In this case, retail investors piled in as shares climbed, while short sellers scrambled to cover, pushing prices higher.  However, the stock is still not without challenges, where its iBuying model is untested at scale, margins are thin, and debt tied to…
Share
BitcoinEthereumNews2025/09/18 04:02