This paper introduces a framework to evaluate representation bias within latent factor recommendation (LFR) models, focusing on how user and item embeddings may encode implicit associations with sensitive attributes like gender. Unlike prior research that centers on performance metrics or exposure bias, this work examines attribute association bias and demonstrates its measurement through an industry case study in podcast recommendations. The goal is to help practitioners audit, interpret, and mitigate bias propagation across multi-stage recommender pipelines, promoting greater fairness and transparency in AI systems.This paper introduces a framework to evaluate representation bias within latent factor recommendation (LFR) models, focusing on how user and item embeddings may encode implicit associations with sensitive attributes like gender. Unlike prior research that centers on performance metrics or exposure bias, this work examines attribute association bias and demonstrates its measurement through an industry case study in podcast recommendations. The goal is to help practitioners audit, interpret, and mitigate bias propagation across multi-stage recommender pipelines, promoting greater fairness and transparency in AI systems.

Detecting Hidden Bias in AI Recommendation Systems

Abstract

1 Introduction

2 Related Work

2.1 Fairness and Bias in Recommendations

2.2 Quantifying Gender Associations in Natural Language Processing Representations

3 Problem Statement

4 Methodology

4.1 Scope

4.3 Flag

5 Case Study

5.1 Scope

5.2 Implementation

5.3 Flag

6 Results

6.1 Latent Space Visualizations

6.2 Bias Directions

6.3 Bias Amplification Metrics

6.4 Classification Scenarios

7 Discussion

8 Limitations & Future Work

9 Conclusion and References

\

3 Problem Statement

Disentangled latent factor recommendation research has become increasingly popular as LFR algorithms have been shown to entangle model attributes in their resulting trained user and item embeddings, leading to unstable and inaccurate recommendation outputs [44, 58, 62, 65]. However, most of this research is outcome-focused, providing mitigation methods for improving performance but not addressing the potential for representation bias in the latent space. As a result, few existing evaluation techniques analyze how attributes are explicitly (due to distinct use as a model attribute) or implicitly captured in the recommendation latent space. For those that do exist, the metrics focus on evaluating disentanglement levels for explicitly used and independent model attributes, instead of investigating possible implicit bias associations between entity vectors and sensitive attributes or systematic bias captured within the latent space [44]. Even though latent representation bias has become a well-studied phenomenon in other types of representation learning, such as natural language and image processing, it remains relatively under-examined compared to the large amounts of research concerning exposure and popularity bias [23].

\ The work presented in this paper looks to close the current research gap concerning evaluating representation bias in LFR algorithms by providing a framework for evaluating attribute association bias. Identifying potential attribute association bias encoded into user and item (entity) embeddings is essential when they become downstream features in hybrid multi-stage recommendation systems, often encountered in industry settings [6, 14]. Evaluating the compositional fairness of these systems, or the potential for bias from one component to amplify into downstream components, is challenging if one does not understand how this type of bias initially occurs within the system component [59]. Understanding the current state of bias is imperative when auditing and investigating the system prior to mitigation in practice [9]. Our proposed methods seek to lower the barrier for practitioners and researchers wishing to understand how attribute association bias can infiltrate their recommendation systems. These evaluation techniques will enable practitioners to more accurately scope what attributes to disentangle in the mitigation and provide baselines for deeming the mitigation successful.

\ We apply these methods to an industry case study to assess user gender attribute association bias in a LFR model for podcast recommendations. Prior research primarily has focused on evaluating provider gender bias due to the lack of publicly available data on user gender bias; to the best of our knowledge, our work provides one of the first looks into quantifying user gender bias in podcast recommendations. We hope that our observations help other industry practitioners to evaluate user gender and other sensitive attribute association bias in their systems, provide quantitative insights into podcast listening beyond earlier qualitative user studies, and encourage future discussion and greater transparency of sensitive topics within industry systems.

\

:::info Authors:

  1. Lex Beattie
  2. Isabel Corpus
  3. Lucy H. Lin
  4. Praveen Ravichandran

:::

:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Trust Wallet issues security alert: It will never ask users for their mnemonic phrase or private key.

Trust Wallet issues security alert: It will never ask users for their mnemonic phrase or private key.

PANews reported on January 17 that Trust Wallet issued a security warning on its X platform, stating that it will never ask users for their mnemonic phrases or
Share
PANews2026/01/17 21:10
Trust Wallet Alerts Users After Security Incident

Trust Wallet Alerts Users After Security Incident

The post Trust Wallet Alerts Users After Security Incident appeared on BitcoinEthereumNews.com. Key Points: Trust Wallet issues alert after $7 million theft from
Share
BitcoinEthereumNews2026/01/17 21:43
Tokenized Assets Shift From Wrappers to Building Blocks in DeFi

Tokenized Assets Shift From Wrappers to Building Blocks in DeFi

The post Tokenized Assets Shift From Wrappers to Building Blocks in DeFi appeared on BitcoinEthereumNews.com. RWAs are rapidly moving on-chain, unlocking new opportunities for investors and DeFi protocols, according to a new report from Dune and RWAxyz. Tokenized real-world assets (RWAs) are moving beyond digital versions of traditional securities to become key building blocks of decentralized finance (DeFi), according to the 2025 RWA Report from Dune and RWAxyz. The report notes that Treasuries, bonds, credit, and equities are now being used in DeFi as collateral, trading instruments, and yield products. This marks tokenization’s “real breakthrough” – composability, or the ability to combine and reuse assets across different protocols. Projects are already showing how this works in practice. Asset manager Maple Finance’s syrupUSDC, for example, has grown to $2.5 billion, with more than 30% placed in DeFi apps like Spark ($570 million). Centrifuge’s new deJAAA token, a wrapper for Janus Henderson’s AAA CLO fund, is already trading on Aerodrome, Coinbase and other exchanges, with Stellar planned next. Meanwhile, Aave’s Horizon RWA Market now lets institutional users post tokenized Treasuries and CLOs as collateral. This trend underscores a bigger shift: RWAs are no longer just copies of traditional assets; instead, they are becoming core parts of on-chain finance, powering lending, liquidity, and yield, and helping to close the gap between traditional finance (TradFi) and DeFi. “RWAs have crossed the chasm from experimentation to execution,” Sid Powell, CEO of Maple Finance, says in the report. “Our growth to $3.5B AUM reflects a broader shift: traditional financial services are adopting crypto assets while institutions seek exposure to on-chain markets.” Investor demand for higher returns and more diversified options is mainly driving this growth. Tokenized Treasuries proved there is strong demand, with $7.3 billion issued by September 2025 – up 85% year-to-date. The growth was led by BlackRock, WisdomTree, Ondo, and Centrifuge’s JTRSY (Janus Henderson Anemoy Treasury Fund). Spark’s $1…
Share
BitcoinEthereumNews2025/09/18 06:10