This article presents an ablation study confirming that an adaptive, per-step-per-layer learning rate is essential for the RECKONING framework.This article presents an ablation study confirming that an adaptive, per-step-per-layer learning rate is essential for the RECKONING framework.

Ablation Study Confirms Necessity of Dynamic Rates for RECKONING Performance

Abstract and 1. Introduction

  1. Background

  2. Method

  3. Experiments

    4.1 Multi-hop Reasoning Performance

    4.2 Reasoning with Distractors

    4.3 Generalization to Real-World knowledge

    4.4 Run-time Analysis

    4.5 Memorizing Knowledge

  4. Related Work

  5. Conclusion, Acknowledgements, and References

\ A. Dataset

B. In-context Reasoning with Distractors

C. Implementation Details

D. Adaptive Learning Rate

E. Experiments with Large Language Models

D Adaptive Learning Rate

Prior works [3, 4] show that a fixed learning rate shared across steps and parameters does not benefit the generalization performance of the system. Instead, [3] recommends learning a learning rate for

\ Table 8: An example of 6-hop reasoning from the CLUTRR-SG dataset.

\ Table 9: Example of distractors (black) and relevant knowledge (red) in the ProofWriter dataset.

\ each network layer and each adaptation step in the inner loop. The layer parameters can learn to adjust the learning rates dynamically at each step. To control the learning rate α in the inner loop adaptively, we define α as a set of adjustable variable: α = {α0, α1, …αL}, where L is the number of layers and for every l = 0, …, L, αl is a vector with N elements given a pre-defined inner loop step number N. The inner loop update equation then becomes

\

\

\ Are dynamic learning rates necessary for RECKONING’s performance? Following prior works on meta-learning [3, 4], we dynamically learn a set of per-step-per-layer learning rates for RECKONING. In this ablation study, we analyze whether dynamic learning rates for the inner loop effectively improve the outer loop reasoning performance. Similarly, we fix other experimental settings and set the number of inner loop steps to 4. As Figure 8 shows, when using a static learning rate (i.e., all layers and inner loop steps share a constant learning rate), the performance drops by a large margin (average drop of 34.2%). The performance drop becomes more significant on questions requiring more reasoning hops (45.5% drop for 4-hop and 39.5% drop for 6-hop), demonstrating the importance of using a dynamic learning rate in the inner loop of our framework.

\ Figure 8: We study how much the dynamic learning rate in the inner loop contributes to the outer loop performance. We fix all the hyperparameters except the option of using the dynamic or fixed learning rate. We conduct the analysis using the CLUTRR-SG dataset since it is more complex and difficult (lower random performance).

\

:::info Authors:

(1) Zeming Chen, EPFL (zeming.chen@epfl.ch);

(2) Gail Weiss, EPFL (antoine.bosselut@epfl.ch);

(3) Eric Mitchell, Stanford University (eric.mitchell@cs.stanford.edu)';

(4) Asli Celikyilmaz, Meta AI Research (aslic@meta.com);

(5) Antoine Bosselut, EPFL (antoine.bosselut@epfl.ch).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Market Opportunity
Solayer Logo
Solayer Price(LAYER)
$0.1951
$0.1951$0.1951
+15.37%
USD
Solayer (LAYER) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.