This article provides the necessary background and notation for reasoning research, defining problems as tuplesThis article provides the necessary background and notation for reasoning research, defining problems as tuples

Exploiting Memorization: Understanding the CLM Objective for Knowledge Encoding in LLMs

Abstract and 1. Introduction

  1. Background

  2. Method

  3. Experiments

    4.1 Multi-hop Reasoning Performance

    4.2 Reasoning with Distractors

    4.3 Generalization to Real-World knowledge

    4.4 Run-time Analysis

    4.5 Memorizing Knowledge

  4. Related Work

  5. Conclusion, Acknowledgements, and References

\ A. Dataset

B. In-context Reasoning with Distractors

C. Implementation Details

D. Adaptive Learning Rate

E. Experiments with Large Language Models

2 Background

Notation We use f : X × θ → Y to refer to parameterised functions in which X is the set of possible inputs and θ are their possible weights (parameters). We use fθ : x 7→ f(x, θ) to easily refer to any f with a given set of parameters θ. We describe reasoning problems using tuples (K, x, y∗ , Y ) such that y ∈ Y is the correct answer for the question x given facts K, and use D to refer to sets of such problems. When it is clear from context, we drop Y and use only (K, x, y∗ ).

\ Language Modeling and Memorization In the causal language modeling (CLM) objective, a parameterized model fθ is trained to estimate the conditional probabilities of each token in a sequence given its predecessors: p(xt|x) Specifically, we train fθ to approximate p using the CLM loss:

\

\ This training objective allows language models to memorize individual training examples [10, 11], and we will exploit this ability to memorize and draw on contextual knowledge in our work.

\

\

:::info Authors:

(1) Zeming Chen, EPFL (zeming.chen@epfl.ch);

(2) Gail Weiss, EPFL (antoine.bosselut@epfl.ch);

(3) Eric Mitchell, Stanford University (eric.mitchell@cs.stanford.edu)';

(4) Asli Celikyilmaz, Meta AI Research (aslic@meta.com);

(5) Antoine Bosselut, EPFL (antoine.bosselut@epfl.ch).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.