Redis was running a large production service with about **10 million monthly active users**. Every record in Redis was a **JSON-serialized Pydantic model** It looked clean and convenient – until it started to hurt. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.Redis was running a large production service with about **10 million monthly active users**. Every record in Redis was a **JSON-serialized Pydantic model** It looked clean and convenient – until it started to hurt. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.

JSON Was Killing Our Redis Memory. Switching Serialization Made It 7× Smaller.

2025/10/30 14:08

We were running a large production service with about 10 million monthly active users, and Redis acted as the main storage for user state. Every record in Redis was a JSON-serialized Pydantic model. It looked clean and convenient – until it started to hurt.

As we grew, our cluster scaled to five Redis nodes, yet memory pressure only kept getting worse. JSON objects were inflating far beyond the size of the actual data, and we were literally paying for air – in cloud invoices, wasted RAM, and degraded performance.

At some point I calculated the ratio of real payload to total storage, and the result made it obvious that we couldn’t continue like this:

14,000 bytes per user in JSON → 2,000 bytes in a binary format

A 7× difference. Just because of the serialization format.

That’s when I built what eventually became PyByntic – a compact binary encoder/decoder for Pydantic models. And below is the story of how I got there, what didn’t work, and why the final approach made Redis (and our wallets) a lot happier.

Why JSON Became a Problem

JSON is great as a universal exchange format. But inside a low-level cache, it turns into a memory-hungry monster:

  • it stores field names in full
  • it stores types implicitly as strings
  • it duplicates structure over and over
  • it’s not optimized for binary data
  • it inflates RAM usage to 3–10× the size of the real payload

When you’re holding tens of millions of objects in Redis, this isn’t some academic inefficiency anymore – it’s a real bill and an extra server in the cluster. At scale, JSON stops being a harmless convenience and becomes a silent tax on memory.

What Alternatives Exist (and Why They Didn’t Work)

I went through the obvious candidates:

| Format | Why It Failed in Our Case | |----|----| | Protobuf | Too much ceremony: separate schemas, code generation, extra tooling, and a lot of friction for simple models | | MessagePack | More compact than JSON, but still not enough – and integrating it cleanly with Pydantic was far from seamless | | BSON | Smaller than JSON, but the Pydantic integration story was still clumsy and not worth the hassle |

All of these formats are good in general. But for the specific scenario of “Pydantic + Redis as a state store” they felt like using a sledgehammer to crack a nut – heavy, noisy, and with barely any real relief in memory usage.

I needed a solution that would:

  • drop into the existing codebase with just a couple of lines
  • deliver a radical reduction in memory usage
  • avoid any extra DSLs, schemas, or code generation
  • work directly with Pydantic models without breaking the ecosystem

What I Built

So I ended up writing a minimalist binary format with a lightweight encoder/decoder on top of annotated Pydantic models. That’s how PyByntic was born.

Its API is intentionally designed so that you can drop it in with almost no friction — in most cases, you just replace calls like:

model.serialize() # replaces .model_dump_json() Model.deserialize(bytes) # replaces .model_validate_json()

Example usage:

from pybyntic import AnnotatedBaseModel from pybyntic.types import UInt32, String, Bool from typing import Annotated class User(AnnotatedBaseModel): user_id: Annotated[int, UInt32] username: Annotated[str, String] is_active: Annotated[bool, Bool] data = User( user_id=123, username="alice", is_active=True ) raw = data.serialize() obj = User.deserialize(raw)

Optionally, you can also provide a custom compression function:

import zlib serialized = user.serialize(encoder=zlib.compress) deserialized_user = User.deserialize(serialized, decoder=zlib.decompress)

Comparison

For a fair comparison, I generated 2 million user records based on our real production models. Each user object contained a mix of fields – UInt16, UInt32, Int32, Int64, Bool, Float32, String, and DateTime32. On top of that, every user also had nested objects such as roles and permissions, and in some cases there could be hundreds of permissions per user. In other words, this was not a synthetic toy example — it was a realistic dataset with deeply nested structures and a wide range of field types.

The chart shows how much memory Redis consumes when storing 2,000,000 user objects using different serialization formats. JSON is used as the baseline at approximately 35.1 GB. PyByntic turned out to be the most compact option — just ~4.6 GB (13.3% of JSON), which is about 7.5× smaller. Protobuf and MessagePack also offer a noticeable improvement over JSON, but in absolute numbers they still fall far behind PyByntic.

Let's compare what this means for your cloud bill:

| Format | Price of Redis on GCP | |----|----| | JSON | $876/month | | PyByn­tic | $118/month | | MessagePack | $380/month | | BSON | $522/month | | Protobuf | $187/month |

This calculation is based on storing 2,000,000 user objects using Memorystore for Redis Cluster on Google Cloud Platform. The savings are significant – and they scale even further as your load grows.

Where Does the Space Savings Come From?

The huge memory savings come from two simple facts: binary data doesn’t need a text format, and it doesn’t repeat structure on every object. In JSON, a typical datetime is stored as a string like "1970-01-01T00:00:01.000000" – that’s 26 characters, and since each ASCII character is 1 byte = 8 bits, a single timestamp costs 208 bits. In binary, a DateTime32 takes just 32 bits, making it 6.5× smaller with zero formatting overhead.

The same applies to numbers. For example, 18446744073709551615 (2^64−1) in JSON takes 20 characters = 160 bits, while the binary representation is a fixed 64 bits. And finally, JSON keeps repeating field names for every single object, thousands or millions of times. A binary format doesn’t need that — the schema is known in advance, so there’s no structural tax on every record.

Those three effects – no strings, no repetition, and no formatting overhead – are exactly where the size reduction comes from.

Conclusion

If you’re using Pydantic and storing state in Redis, then JSON is a luxury you pay a RAM tax for. A binary format that stays compatible with your existing models is simply a more rational choice.

For us, PyByntic became exactly that — a logical optimization that didn’t break anything, but eliminated an entire class of problems and unnecessary overhead.

GitHub repository: https://github.com/sijokun/PyByntic

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

UK Looks to US to Adopt More Crypto-Friendly Approach

UK Looks to US to Adopt More Crypto-Friendly Approach

The post UK Looks to US to Adopt More Crypto-Friendly Approach appeared on BitcoinEthereumNews.com. The UK and US are reportedly preparing to deepen cooperation on digital assets, with Britain looking to copy the Trump administration’s crypto-friendly stance in a bid to boost innovation.  UK Chancellor Rachel Reeves and US Treasury Secretary Scott Bessent discussed on Tuesday how the two nations could strengthen their coordination on crypto, the Financial Times reported on Tuesday, citing people familiar with the matter.  The discussions also involved representatives from crypto companies, including Coinbase, Circle Internet Group and Ripple, with executives from the Bank of America, Barclays and Citi also attending, according to the report. The agreement was made “last-minute” after crypto advocacy groups urged the UK government on Thursday to adopt a more open stance toward the industry, claiming its cautious approach to the sector has left the country lagging in innovation and policy.  Source: Rachel Reeves Deal to include stablecoins, look to unlock adoption Any deal between the countries is likely to include stablecoins, the Financial Times reported, an area of crypto that US President Donald Trump made a policy priority and in which his family has significant business interests. The Financial Times reported on Monday that UK crypto advocacy groups also slammed the Bank of England’s proposal to limit individual stablecoin holdings to between 10,000 British pounds ($13,650) and 20,000 pounds ($27,300), claiming it would be difficult and expensive to implement. UK banks appear to have slowed adoption too, with around 40% of 2,000 recently surveyed crypto investors saying that their banks had either blocked or delayed a payment to a crypto provider.  Many of these actions have been linked to concerns over volatility, fraud and scams. The UK has made some progress on crypto regulation recently, proposing a framework in May that would see crypto exchanges, dealers, and agents treated similarly to traditional finance firms, with…
Paylaş
BitcoinEthereumNews2025/09/18 02:21