Datadog’s Toto model was trained on roughly one trillion time series data points—75% from curated observability metrics and 25% from the LOTSA dataset. Through padding, masking, and data augmentation (including random offsets and Gaussian sampling), Datadog ensured data diversity and quality. Synthetic data (about 5%) simulated additional real-world variability via ARMA processes, seasonal trends, and noise. Together, these methods improved Toto’s robustness and ability to generalize across domains.Datadog’s Toto model was trained on roughly one trillion time series data points—75% from curated observability metrics and 25% from the LOTSA dataset. Through padding, masking, and data augmentation (including random offsets and Gaussian sampling), Datadog ensured data diversity and quality. Synthetic data (about 5%) simulated additional real-world variability via ARMA processes, seasonal trends, and noise. Together, these methods improved Toto’s robustness and ability to generalize across domains.

How Datadog Turned Noisy Observability Metrics Into AI Gold

  1. Background
  2. Problem statement
  3. Model architecture
  4. Training data
  5. Results
  6. Conclusions
  7. Impact statement
  8. Future directions
  9. Contributions
  10. Acknowledgements and References

Appendix

4 Training data

We pretrained Toto with a dataset of approximately one trillion time series points. Of these, roughly three-quarters are anonymous observability metrics from the Datadog platform. The remaining points come from the LOTSA dataset [15], a compilation of publicly-available time series datasets across many different domains.

\ 4.1 Datadog dataset

\ The Datadog platform ingests more than a hundred trillion events per day. However, much of this data is sparse, noisy, or too granular or high in cardinality to be useful in its raw form. To curate a highquality dataset for efficient model training, we sample queries based on quality and relevance signals from dashboards, monitor alerts, and notebooks. This provides a strong signal that the data resulting from these queries is of critical importance and sufficient quality for observability of real-world applications.

\ Datadog metrics are accessed using a specialized query language supporting filters, group-bys, time aggregation, and various transformations and postprocessing functions [43]. We consider groups returned from the same query to be related variates in a multivariate time series (Fig. 4). After we retrieve the query results, we discard the query strings and group identifiers, keeping only the raw numeric data.

\ Handling this vast amount of data requires several preprocessing steps to ensure consistency and quality. Initially, we apply padding and masking techniques to align the series lengths, making them divisible by the patch stride. This involves adding necessary left-padding to both the time series data and the ID mask, ensuring compatibility with the model's requirements.

\ Various data augmentations are employed to enhance the dataset's robustness. We introduce random time offsets to prevent memorization caused by having series always align the same way with the patch grid. After concatenating the Datadog and LOTSA datasets for training, we also implement a variate shuffling strategy to maintain diversity and representation. Specifically, 10% of the time, we combine variates that are not necessarily related, thus creating new, diverse combinations of data points. To sample the indices, we employ a normal distribution with a standard deviation of 1000, favoring data points that were closer together in the original datasets. This Gaussian sampling ensures that, while there is a preference for adjacent data points, significant randomness is introduced to enhance the diversity of the training data. This approach improves the model's ability to generalize across different types of data effectively.

\ By implementing these rigorous preprocessing steps and sophisticated data handling mechanisms, we ensure that the training data for Toto is of the highest quality, ultimately contributing to the model's superior performance and robustness.

\ 4.2 Synthetic data

\ We use a synthetic data generation process similar to TimesFM [19] to supplement our training datasets, improving the diversity of the data and helping to teach the model basic structure. We simulate time series data through the composition of components such as piecewise linear trends, ARMA processes, sinusoidal seasonal patterns, and various residual distributions. We randomly combine five of these processes per variate, introducing patterns not always present in our real-world datasets. The generation process involves creating base series with random transformations, clipping extreme values, and rescaling to a specified range. By making synthetic data approximately 5% of our training dataset, we ensure a wide range of time-series behaviors are captured. This diversity exposes our models to various scenarios during training, improving their ability to generalize and effectively handle real-world data.

\

:::info Authors:

(1) Ben Cohen (ben.cohen@datadoghq.com);

(2) Emaad Khwaja (emaad@datadoghq.com);

(3) Kan Wang (kan.wang@datadoghq.com);

(4) Charles Masson (charles.masson@datadoghq.com);

(5) Elise Rame (elise.rame@datadoghq.com);

(6) Youssef Doubli (youssef.doubli@datadoghq.com);

(7) Othmane Abou-Amal (othmane@datadoghq.com).

:::


:::info This paper is available on arxiv under CC BY 4.0 license.

:::

\

Piyasa Fırsatı
Sleepless AI Logosu
Sleepless AI Fiyatı(AI)
$0,0367
$0,0367$0,0367
+2,82%
USD
Sleepless AI (AI) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Top Altcoins To Hold Before 2026 For Maximum ROI – One Is Under $1!

Top Altcoins To Hold Before 2026 For Maximum ROI – One Is Under $1!

BlockchainFX presale surges past $7.5M at $0.024 per token with 500x ROI potential, staking rewards, and BLOCK30 bonus still live — top altcoin to hold before 2026.
Paylaş
Blockchainreporter2025/09/18 01:16
Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Paylaş
BitcoinEthereumNews2025/09/18 00:27
Why Blazpay and TRON Are the Best Coin to Buy Now According to 2025 Predictions

Why Blazpay and TRON Are the Best Coin to Buy Now According to 2025 Predictions

Phase 5 of the Blazpay presale is live now, ending soon, and early investors are already noticing the explosive potential of this presale token. With TRON (TRX)
Paylaş
Techbullion2025/12/20 17:12