Describing the application of Faraday synthesis to the calibrated CHIME data to create maps of integrated polarized intensity and peak Faraday depthDescribing the application of Faraday synthesis to the calibrated CHIME data to create maps of integrated polarized intensity and peak Faraday depth

Calibration of Radio Polarization Data: Enhancing Correlation Between CHIME and Dwingeloo Surveys

2025/10/09 00:15

Abstract and 1 Introduction

  1. Faraday Rotation and Faraday Synthesis

  2. Dara & Instruments

    3.1. CHIME and GMIMS surveys and 3.2. CHIME/GMIMS Low Band North

    3.3. DRAO Synthesis Telescope Observations

    3.4. Ancillary Data Sources

  3. Features of the Tadpole

    4.1. Morphology in single-frequency images

    4.2. Faraday depths

    4.3. Faraday complexity

    4.4. QU fitting

    4.5. Artifacts

  4. The Origin of the Tadpole

    5.1. Neutral Hydrogen Structure

    5.2. Ionized Hydrogen Structure

    5.3. Proper Motions of Candidate Stars

    5.4. Faraday depth and electron column

  5. Summary and Future Prospects

\ APPENDIX

A. RESOLVED AND UNRESOLVED FARADAY COMPONENTS IN FARADAY SYNTHESIS

B. QU FITTING RESULTS

\ REFERENCES

3.1. CHIME and GMIMS surveys

3.2. CHIME/GMIMS Low Band North

\

\ The ringmaps we use do not have beam deconvolution applied. There are small artifacts in the image resulting from this which we describe in Section 4.5, however, their presence is not detrimental to studying structures on the scale of several degrees, such as the tadpole. In this analysis, we use the 400 − 729 MHz subset of the full CHIME band, as the highest frequencies are contaminated by aliasing, which makes the maps unreliable in the region of interest.

\ 3.2.1. Polarization angle calibration

\

\

\

\ Stokes U and V are measured from the crosscorrelation products. We assume that ⟨V ⟩ = 0 from the sky in diffuse emission because synchrotron emission in low-density astrophysical environments does not produce circular polarization. Leakage between V and U arises from phase offsets. We measure a mean phase shift ⟨ψ⟩(δ, ν) at each declination and frequency assuming that ⟨V ⟩ = 0 and calculate

\

\ The ⟨V ⟩ = 0 assumption leads to high-quality fits even in fast radio burst (FRB) observations, where the assumption has less clear physical justification than in the diffuse polarized emission we investigate (Mckinven et al. 2023). We find that the phase shift is linear in frequency, consistent with a cable delay τ = ⟨ψ⟩/2πν ∼ 1 ns for the diffuse emission, as Mckinven et al. (2021, their Appendix A) found in CHIME/FRB data.

\ In Figure 1, we compare the calibrated data to the Dwingeloo telescope survey at 610 MHz in the Fan region (Brouw & Spoelstra 1976). There is a strong correlation between Dwingeloo U and CHIME U and Dwingeloo Q and CHIME Q in those directions for which there is Dwingeloo data, with correlation coefficient R values of 0.91 for U − U and 0.89 for Q − Q comparisons. This is a significant improvement from the uncalibrated correlation coefficients of 0.76 and 0.59 respectively. We find a remaining leakage of up to 20% in Stokes Q based on unresolved point source measurements. Using the mean orthogonal distance between each point and the fitted line, we find that noise from CHIME and Dwingeloo data describe ≈ 70% of the scatter in Figure 1. The polarization angle correlation, also shown in Figure 1, is also improved through calibration, and most outliers are points with low polarized intensity (yellow dots), where the uncertainty in derived χ is high.

\ We show the resulting CHIME Q and U maps, with the χ = 0 reference axis rotated to the north Galactic pole, in Figure 2. While Stokes I to Q leakage does exist in our data, the tadpole structure cannot simply be the result of leakage. Although there is total intensity emission over the entire Fan Region, including the tadpole, this emission is featureless on small scales and thus cannot produce spurious polarization matching the tadpole in morphology. Furthermore, the tadpole cannot be the product of Stokes I emission originating at large angular distances (such as the Galactic plane) and seen in far sidelobes. While the far sidelobes have poor polarization properties, their polarization averages to low values over sizable areas. Moreover, with linear feeds, leakage from I is primarily into Q, not U (in the native equatorial coordinates of CHIME), but the tadpole is already evident in Stokes U in equatorial coordinates (not shown).

\

\

\ 3.2.2. Faraday synthesis on CHIME data

\

\

\ Using the rmtools_peakfitcube algorithm in RM-Tools, we obtain the peak Faraday depth and its

\ Figure 2. Images of the tadpole region in Stokes Q and U at 614 MHz in Galactic coordinates. The ‘×’ markers indicate the position of B2(e) star HD 20336 (the × near the center of the circular tadpole head) as well as the selected spectra shown in Figure 7. The thin black line represents the Local Standard of Rest (LSR)-corrected proper motion of HD 20336, projected backwards in time over 3 Myr, with each dot representing 1 Myr. The translucent lines represent the error cone, which is dominated by the uncertainty in the LSR correction.

\ associated error for every spectrum along all lines of sight. The resulting map is shown in Figure 3b. We use peak Faraday depths rather than a first moment (Dickey et al. 2019) to focus on the Faraday depth of the brightest feature in each LOS rather than a weighted mean Faraday depth in Faraday complex regions.

\ We show the integrated polarized intensity across the Faraday depth spectra as a zero moment map in Figure 3a. A polarization angle map derotated to χ0 by the peak Faraday depth at each pixel is shown in Figure 3c.

\

:::info Authors:

(1) Nasser Mohammed, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(2) Anna Ordog, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(3) Rebecca A. Booth, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;

(4) Andrea Bracco, INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy and Laboratoire de Physique de l’Ecole Normale Superieure, ENS, Universit´e PSL, CNRS, Sorbonne Universite, Universite de Paris, F-75005 Paris, France;

(5) Jo-Anne C. Brown, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;

(6) Ettore Carretti, INAF-Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy;

(7) John M. Dickey, School of Natural Sciences, University of Tasmania, Hobart, Tas 7000 Australia;

(8) Simon Foreman, Department of Physics, Arizona State University, Tempe, AZ 85287, USA;

(9) Mark Halpern, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(10) Marijke Haverkorn, Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands;

(11) Alex S. Hill, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(12) Gary Hinshaw, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(13) Joseph W. Kania, Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506, USA and Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA;

(14) Roland Kothes, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(15) T.L. Landecker, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(16) Joshua MacEachern, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(17) Kiyoshi W. Masui, MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;

(18) Aimee Menard, Department of Computer Science, Math, Physics, & Statistics, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada and Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(19) Ryan R. Ransom, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada and Department of Physics and Astronomy, Okanagan College, Kelowna, BC V1Y 4X8, Canada;

(20) Wolfgang Reich, Max-Planck-Institut fur Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany;(21) Patricia Reich, 16

(22) J. Richard Shaw, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada

(23) Seth R. Siegel, Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N25 2YL, Canada, Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8, Canada, and Trottier Space Institute, McGill University, 3550 rue University, Montreal, QC H3A 2A7, Canada;

(24) Mehrnoosh Tahani, Banting and KIPAC Fellowships: Kavli Institute for Particle Astrophysics & Cosmology (KIPAC), Stanford University, Stanford, CA 94305, USA;

(25) Alec J. M. Thomson, ATNF, CSIRO Space & Astronomy, Bentley, WA, Australia;

(26) Tristan Pinsonneault-Marotte, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 Canada;

(27) Haochen Wang, MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;

(28) Jennifer L. West, Dominion Radio Astrophysical Observatory, Herzberg Research Centre for Astronomy and Astrophysics, National Research Council Canada, PO Box 248, Penticton, BC V2A 6J9, Canada;

(29) Maik Wolleben, Skaha Remote Sensing Ltd., 3165 Juniper Drive, Naramata, BC V0H 1N0, Canada.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

면책 조항: 본 사이트에 재게시된 글들은 공개 플랫폼에서 가져온 것으로 정보 제공 목적으로만 제공됩니다. 이는 반드시 MEXC의 견해를 반영하는 것은 아닙니다. 모든 권리는 원저자에게 있습니다. 제3자의 권리를 침해하는 콘텐츠가 있다고 판단될 경우, service@support.mexc.com으로 연락하여 삭제 요청을 해주시기 바랍니다. MEXC는 콘텐츠의 정확성, 완전성 또는 시의적절성에 대해 어떠한 보증도 하지 않으며, 제공된 정보에 기반하여 취해진 어떠한 조치에 대해서도 책임을 지지 않습니다. 본 콘텐츠는 금융, 법률 또는 기타 전문적인 조언을 구성하지 않으며, MEXC의 추천이나 보증으로 간주되어서는 안 됩니다.

추천 콘텐츠

IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

The post IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge! appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 18:00 Discover why BlockDAG’s upcoming Awakening Testnet launch makes it the best crypto to buy today as Story (IP) price jumps to $11.75 and Hyperliquid hits new highs. Recent crypto market numbers show strength but also some limits. The Story (IP) price jump has been sharp, fueled by big buybacks and speculation, yet critics point out that revenue still lags far behind its valuation. The Hyperliquid (HYPE) price looks solid around the mid-$50s after a new all-time high, but questions remain about sustainability once the hype around USDH proposals cools down. So the obvious question is: why chase coins that are either stretched thin or at risk of retracing when you could back a network that’s already proving itself on the ground? That’s where BlockDAG comes in. While other chains are stuck dealing with validator congestion or outages, BlockDAG’s upcoming Awakening Testnet will be stress-testing its EVM-compatible smart chain with real miners before listing. For anyone looking for the best crypto coin to buy, the choice between waiting on fixes or joining live progress feels like an easy one. BlockDAG: Smart Chain Running Before Launch Ethereum continues to wrestle with gas congestion, and Solana is still known for network freezes, yet BlockDAG is already showing a different picture. Its upcoming Awakening Testnet, set to launch on September 25, isn’t just a demo; it’s a live rollout where the chain’s base protocols are being stress-tested with miners connected globally. EVM compatibility is active, account abstraction is built in, and tools like updated vesting contracts and Stratum integration are already functional. Instead of waiting for fixes like other networks, BlockDAG is proving its infrastructure in real time. What makes this even more important is that the technology is operational before the coin even hits exchanges. That…
공유하기
BitcoinEthereumNews2025/09/18 00:32
Dogecoin, Cardano, Arbitrum Among Top Losers—Biggest Slump Across Mid/Low Market Caps

Dogecoin, Cardano, Arbitrum Among Top Losers—Biggest Slump Across Mid/Low Market Caps

Dogecoin, Cardano, and Arbitrum lead losses in a major crypto market slump, with mid and low-cap tokens facing sharp declines. Discover what’s driving the downturn and how it impacts the broader cryptocurrency landscape.
공유하기
Cryptodaily2025/09/23 16:01
XRP weakens after repeated price-action failures near $1.95

XRP weakens after repeated price-action failures near $1.95

Markets Share Share this article
Copy linkX (Twitter)LinkedInFacebookEmail
XRP weakens after repeated price-action fail
공유하기
Coindesk2025/12/22 13:27