This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.

Foundation Models for 3D Scenes: DINOv2 vs. CLIP for Instance Differentiation

2025/12/11 02:00

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

2.2. Semantic Scene Understanding and Instance Segmentation

f 3D scenes. This domain has been thoroughly explored using closed-set vocabulary methods, including our prior work [1], which utilizes Mask2Former [7] for image segmentation. Various studies [18, 19, 20] have adopted a similar approach to achieve object segmentation, resulting in a closed-set framework. While these methods are effective, they are constrained by the limitation of predefined object categories. Our approach employs SAM [21] to acquire segmentation masks for open-set detection. Moreover, our methodology, distinct from many existing techniques that depend heavily on extensive pre-training or fine-tuning, integrates these models to forge a more comprehensive and adaptable 3D scene representation. This emphasizes enhanced semantic understanding and spatial awareness.

\ To improve the semantic understanding of the objects detected within our images, we harness detailed feature representations using two foundational models: CLIP [9] and DINOv2 [10]. DINOv2, a Vision Transformer trained through self-supervision, recognises pixel-level correspondences between images and captures spatial hierarchies. Compared to CLIP, DINOv2 more effectively distinguishes between two distinct instances of the same object type, which poses challenges for CLIP.

\ It’s crucial to differentiate individual instances following the semantic identification of objects. Early methods employed a Region Proposal Network (RPN) to predict bounding boxes for these instances [22]. Alternatively, some strategies suggest a generalized architecture for managing panoptic segmentation [23]. In our preceding approach, we utilized the segmentation model Mask2Former [7], which employs an attention mechanism to isolate object-centric features. Recent research also tackles semantic scene understanding using open vocabularies [24], utilizing multi-view fusion and 3D convolutions to derive dense features from an open-vocabulary embedding space for precise semantic segmentation. Our current pipeline leverages Grounding DINO [25] to generate bounding boxes, which are then input into the Segment Anything Model (SAM) [21] to produce individual object masks, thus enabling instance segmentation within the scene.

\

:::info Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work.

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Edges higher ahead of BoC-Fed policy outcome

Edges higher ahead of BoC-Fed policy outcome

The post Edges higher ahead of BoC-Fed policy outcome appeared on BitcoinEthereumNews.com. USD/CAD gains marginally to near 1.3760 ahead of monetary policy announcements by the Fed and the BoC. Both the Fed and the BoC are expected to lower interest rates. USD/CAD forms a Head and Shoulder chart pattern. The USD/CAD pair ticks up to near 1.3760 during the late European session on Wednesday. The Loonie pair gains marginally ahead of monetary policy outcomes by the Bank of Canada (BoC) and the Federal Reserve (Fed) during New York trading hours. Both the BoC and the Fed are expected to cut interest rates amid mounting labor market conditions in their respective economies. Inflationary pressures in the Canadian economy have cooled down, emerging as another reason behind the BoC’s dovish expectations. However, the Fed is expected to start the monetary-easing campaign despite the United States (US) inflation remaining higher. Investors will closely monitor press conferences from both Fed Chair Jerome Powell and BoC Governor Tiff Macklem to get cues about whether there will be more interest rate cuts in the remainder of the year. According to analysts from Barclays, the Fed’s latest median projections for interest rates are likely to call for three interest rate cuts by 2025. Ahead of the Fed’s monetary policy, the US Dollar Index (DXY), which tracks the Greenback’s value against six major currencies, holds onto Tuesday’s losses near 96.60. USD/CAD forms a Head and Shoulder chart pattern, which indicates a bearish reversal. The neckline of the above-mentioned chart pattern is plotted near 1.3715. The near-term trend of the pair remains bearish as it stays below the 20-day Exponential Moving Average (EMA), which trades around 1.3800. The 14-day Relative Strength Index (RSI) slides to near 40.00. A fresh bearish momentum would emerge if the RSI falls below that level. Going forward, the asset could slide towards the round level of…
Share
BitcoinEthereumNews2025/09/18 01:23